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Abstract: Owing to the quadratic nature of the theory, Einstein-Gauss-Bonnet gravity

generically permits two distinct vacuum solutions. One solution (the ”Einstein” vacuum)

has a well defined limit as the Gauss-Bonnet coupling goes to zero, whereas the other

solution (the ”stringy” vacuum) does not. There has been some debate regarding the

stability of these vacua, most recently from Deser & Tekin who have argued that the

corresponding black hole solutions have positive mass and as such both vacua are stable.

Whilst the statement about the mass is correct, we argue that the stringy vacuum is still

perturbatively unstable. Simply put, the stringy vacuum suffers from a ghost-like instability

that is not excited by the spherically symmetric black hole, but would be excited by any

source likely to emit gravitational waves, such as a binary system. This result is reliable

except in the strongly coupled regime close to the Chern-Simons limit, when the two vacua

are almost degenerate. In this regime, we study instanton transitions between branches

via bubble nucleation, and calculate the nucleation probability. This demonstrates that

there is large mixing between the vacua, so that neither of them can accurately describe

the true quantum vacuum. We also present a new gravitational instanton describing black

hole pair production in de Sitter space on the Einstein branch, which is preferred to the

usual Nariai instantons and is not present in pure Einstein gravity.
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1. Introduction

In four dimensions, the Einstein-Hilbert action, supplemented with an arbitrary cosmo-

logical constant, is the unique gravitational action giving rise to field equations that only

depend on the metric and its first two derivatives [1]. This is no longer true in D > 4 di-

mensions, when the Einstein-Hilbert action is merely a special case of the Lovelock action,

satisfying the same property [2]. In D dimensions, the Lovelock action is given by a linear

combination of [D−1
2 ] dimensionally extended Euler characteristics,

SLovelock =

[ D−1

2
]

∑

n=0

αnSn, Sn = 2−n

∫

M
dDx

√−g δ
[c1d1...cndn]
[a1b1...anbn]R

a1b1
c1d1

. . . Ranbn

cndn

(1.1)

For any n, Sn is a D-form that corresponds to a dimensionally extended Euler characteristic.

it is a topological invariant in D = 2n (trivial for D < 2n), but becomes dynamical for

D > 2n, and in just the right way as to keep the field equations down to second order.

This is because the higher order derivatives that inevitably appear under metric variation

of (1.1) can all be written as total divergences. Lovelock gravity is dynamically different

from Einstein gravity for D > 4, even though the theories are indistinguishable in four

dimensions or less (for a review see [3]).

Clearly Lovelock theory is the non-trivial and unique classical generalisation of GR in

higher dimensions and this makes it interesting to study in its own right. Not surprisingly

it has also some relevance to string theory. Higher order curvature terms are in fact known

to appear in the slope expansion of the heterotic string, generically introducing higher

derivatives in the metric [4]. This will inevitably lead to perturbative ghosts, which are

known to be absent in the full non perturbative version of string theory. One can avoid

this apparent inconsistency (to leading order) if the slope expansion takes the form of

the Lovelock action [5]. Indeed, the second order curvature terms are known to take the

form of the Gauss-Bonnet combination [6]. Because this corresponds to the non-trivial
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n = 2 Lovelock term in (1.1), we are guaranteed that there are no higher derivatives in the

effective string action, and therefore no ghosts to second order.

This has motivated a great deal of interest in Lovelock gravity, and Einstein-Gauss-

Bonnet (EGB) gravity in particular (see, for example, [7 – 13]). This is the simplest of

Lovelock’s extensions of General Relativity, and is described by the following action

SGB = κ

∫

M
dDx

√−g(−2Λ + R + αLGB), LGB = R2 − 4RabR
ab + RabcdR

abcd (1.2)

where κ = 1/16πG. The action (1.2) is the sum of the first three Lovelock forms, the first

two giving rise to the well known Einstein-Hilbert term and cosmological constant, the third

to the Gauss-Bonnet invariant,
√−gLGB. The latter term is topological in four dimensions,

and becomes dynamical in D > 4 dimensions. EGB gravity has been extensively studied in

the braneworld context owing to a shared “stringy” and cosmological motivation [14 – 17]

and as a modified “scalar-tensor” theory of gravity in 4 dimensions (see for example [18]).

In this paper, we will restrict attention to D dimensional EGB gravity, coupled to

ordinary matter fields. The field equations are given by

Gab + Λgab + αHab =
1

2κ
Tab (1.3)

where Tab is the matter energy-momentum tensor, Gab is the Einstein tensor for the metric

gab, and

Hab = 2RRab − 4RacR
c
b − 4RacbdR

cd + 2RacdeRb
cde − 1

2
LGBgab (1.4)

is the second order Lovelock tensor [2]. Given the higher order nature of the theory (1.1),

the vacuum field equations generically admit multiple solutions with maximally symmetry

(up to the order n in number). For EGB, we therfore have up to two distinct maximally

symmetric vacuum solutions, with two possible effective cosmological constants,

Λ±
eff = ΛCS

(

1 ±
√

1 − 2Λ

ΛCS

)

, (1.5)

where

ΛCS = − 1

4α

(D − 1)(D − 2)

(D − 3)(D − 4)
(1.6)

This is true even in the absence of a bare cosmological contant in the action. For these vacua

to be well defined, the bare cosmological constant must satisfy the bound, Λ/ΛCS ≤ 1/2. It

is easy to check that Λ+
eff/ΛCS ≥ 1 ≥ Λ−

eff/ΛCS, with equality when the bound is saturated,

Λ = ΛCS/2. This is known as the Chern-Simons limit (at least in odd dimensions) [34],

and corresponds to the case where the two roots actually coincide. Note that only the

lower root has a smooth limit, Λ−
eff → Λ, as α → 0, and as such is often refered to as

the “Einstein” branch. In contrast, the upper root, Λ+
eff has no smooth limit as α → 0,

and represents a distinct new feature of EGB gravity that is completely absent in higher

dimensional General Relativity. For this reason, this branch is often refered to as the

“stringy” or “Gauss-Bonnet” branch.
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Our main interest here lies in the physical relevance of these vacua and hence in their

stability, in particular that of the Gauss-Bonnet vacuum. There has been much to-ing

and fro-ing in the literature over the years regarding this issue [7, 8, 10, 11]. We will

review some of the various arguments in the next section, before clarifying the situation,

we hope, once and for all. As a brief taster, note that whilst we agree with Deser and

Tekin’s recent claims that the gravitational mass of spherically symmetric solutions always

takes the same sign as the inertial mass of the source [11], we strongly disagree with

their conclusions regarding the classical stability of the vacua. We will explain in detail

why the Gauss-Bonnet vacuum is certainly unstable, at least perturbatively, and why this

does not conflict with Deser and Tekin’s calculations of gravitational mass. In short, the

instability is due to a freely propagating tensor ghost that is not excited by the spherically

symmetric solutions.

It turns out that the perturbative analysis of section 2 actually breaks down close

to the Chern-Simons limit, due to strong coupling. At this point, we need to investigate

Gauss-Bonnet vacuum stability using non-perturbative techniques. To this end, in sec-

tion 3, we will focus on instanton solutions, corresponding to differing vacuum bubbles

surrounded by domain walls of ordinary matter. Happily, our description works best in the

near Chern-Simons limit, in contrast to the analysis of section 2. By employing standard

semi-classical techniques [20, 21], we will find that the mixing between branches is com-

pletely unsuppressed. Our results indicate that in the near Chern-Simons limit, an empty,

homogeneous vacuum, on either branch, does not describe a stable quantum vacuum, as it

becomes littered with bubbles of vacua from the other branch.

We conclude this paper with some discussion, presenting a novel everywhere smooth

EGB gravitational instanton with a non-zero temperature. This solution exists only on the

Einstein branch, but is absent in General Relativity. It can be used to demonstrate the

semi-classical instability of de Sitter space, in addition to the standard Nariai instanton.

2. Chronicles of a stringy vacuum

Let us begin this section with a short account regarding the status of Gauss-Bonnet vacua

and their physical relevance. We begin, not with the vacuum itself, but with a spherically

symmetric source of inertial mass, M . Now in Einstein gravity, we know that Birkhoff’s

theorem applies outside the source, and that the corresponding solution is Schwarzschild

or Schwarzschild-(anti) de Sitter

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩD−2 (2.1)

where the potential is given by

V (r) = − 2Λr2

(D − 1)(D − 2)
+ 1 − M

(D − 2)ΩD−2κrD−3
(2.2)

and dΩD−2 is the metric on a unit (D−2)-sphere. The gravitational (ADM) mass, E of this

solution exactly matches the inertial mass of the source, i.e. E = M [22]. As long as M > 0,
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the singularity at r = 0 is shielded by a horizon in accordance with cosmic censorship.1

In Gauss-Bonnet gravity, a generalised form of Birkhoff’s theorem2 also holds [14, 15, 23],

and, as expected, there are two branches of Schwarzschild-like solutions, with potentials

given by [7, 8]

V±(r) = 1 − 2ΛCSr2

(D − 1)(D − 2)

(

1 ±
√

1 − 2Λ

ΛCS
− M(D − 1)

ΛCSΩD−2κrD−1

)

, (2.3)

Now, even for M > 0, we immediately see that the cosmic censorship hypothesis will not

always hold on the Gauss-Bonnet branch — naked singularities can form even for sources

of positive inertial mass! The situation becomes even more bizarre when one considers the

asymptotic behaviour of the potential (2.3)

V±(r) ∼ − 2Λ±
effr2

(D − 1)(D − 2)
+ 1 ± M

(D − 2)ΩD−2κrD−3
+ . . . (2.4)

One is tempted to compare this with the potential (2.2) in Einstein gravity, and to naively

conclude that the gravitational mass is given by

E± = ∓M (2.5)

If this were correct, it would mean the solution on the Gauss-Bonnet branch had negative

gravitational mass, even though the source had positive inertial mass! Again, if correct, this

would certainly render the Gauss-Bonnet vacuum unstable, as it would not be a true local

ground state of the theory. This weird behaviour was attributed to perturbations around

the vacuum containing a ghost [7, 8, 10]. To see the ghost, consider metric perturbations,

δgab = hab about the maximally symmetric vacuum solution, ḡab, with effective cosmological

constant, Λeff . Expanding the action (1.2) to quadratic order, we find that

δ2S = −1

2
κ

(

1 − Λeff

ΛCS

)
∫

M
dDx

√−ḡ hab (δ1Gab + Λeffhab) + δ2Sm (2.6)

where δ1Gab is the Einstein tensor expanded to linear order in hab, and δ2Sm is the quadratic

contribution from the matter part of the action. Variation of this action gives the linearised

field equations
(

1 − Λeff

ΛCS

)

(δ1Gab + Λeffhab) =
1

2κ
δ1Tab (2.7)

The Einstein branch is well behaved at this order, since Λeff/ΛCS < 1, and so the kinetic

part of the gravitational action has the usual sign. Indeed, we see from the equations of

motion (2.7) that the linearised theory is the same as in Einstein gravity, with a positive

effective Newton’s constant. In contrast, on the Gauss-Bonnet branch, Λeff/ΛCS > 1, so

the kinetic term in the action has the opposite sign, indicating the presence of a ghost. We

also see how the linearised theory corresponds to Einstein gravity with a negative effective

1In D = 5 there is critical bound for the mass beyond which the solution is singular but this does not

affect the argument presented here
2In the Chern-Simons limit, an extra class of degenerate solutions exist [15]
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Newton’s constant. This corresponds to an anti -gravity theory and leads to gravitational

repulsion, consistent with the expansion of the potential (2.4).

Because the kinetic term of a ghost has the wrong sign, we can think of it as carrying

negative kinetic energy. As a result, it was originally claimed [7, 8, 10] that the ghost was

responsible for the negative gravitational energy stored in the gravitational field around

a spherically symmetric source of positive mass, as indicated by equation (2.5). However,

this statement cannot be correct, at least perturbatively around the vacuum, as we will

now explain.

A ghost can only lower the gravitational energy of the gravitational field if it is freely

propagating. Now, the perturbation about the Gauss-Bonnet vacuum can be split into

tensors, vectors and scalars in the usual way. By direct comparison with Einstein gravity,

which is equivalent up to a sign at linear order, we can conclude that only the tensor modes

propagate freely on the vacuum. Put another way: there are no scalar or vector gravita-

tional waves. So, for the energy of the gravitational field to be negative, the spherically

symmetric solution (2.3) must excite the negative energy gravitational waves coming from

the vacuum tensor perturbations. However, this is not the case. The spherically symmet-

ric solution only excites scalar modes. Since these do not propagate freely, by virtue of

Birkhoff’s theorem, they only carry the energy given to them by the source. The gravi-

tational energy of the black hole can only depend on the overall sign of the gravitational

Hamiltonian, and not on which branch you are on.

This statement is actually consistent with some of Deser and Tekin’s more recent

work [11]. By developing new techniques for calculating the ADM and AD energy of

quadratic gravity theories, they found that the correct energy expressions should actually

be given by

E± = M, (2.8)

rather than equation (2.5). The gravitational energy is always positive for a source of

positive inertial mass, whatever branch you happen to be on! These new expressions were

later confirmed using the Gauss-Bonnet Hamiltonian [12], and agree with the reasoning

given in the previous paragraph.

Deser and Tekin went on however, to claim that the positivity of the energy (2.8) meant

that the vacua on both branches were stable. We do not agree with this claim. We have

already explained how the spherically symmetric solutions only excite scalars. These do not

propagate freely and can only carry the energy given to them by the source itself. However,

we cannot rule out the possibility that other, non-spherically symmetric, solutions exist

that excite the freely propagating tensor modes, eg a binary system with a time dependent

mass quadrupole moment. On the Gauss-Bonnet branch, these do indeed give rise to

negative energy gravitational waves, rendering the Gauss-Bonnet background unstable.

This kind of instability can manifest itself already at a classical level. To see how this

might occur consider, for example, a binary system of black holes, or indeed any other

source capable of emitting gravitational waves in D dimensions (see [24] for some recent

discussion of gravitational waves and binary systems in higher dimensional GR). If our

theory of gravity happens to contain freely propagating tensor ghosts, the energy of our
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source will increase as it emits waves carrying negative energy. For the case of the binary

system, its orbital period will become quicker and quicker as more and more gravitational

waves are emitted at an ever increasing rate!

Even in a true vacuum, with no matter excitations, a ghost will lead to a quantum in-

stability if it is coupled to matter, as it will be spontaneously produced in the vacuum along

with ordinary matter fields [25]. Since the ghost carries negative energy, and the matter

fields, positive energy, this can occur without any overall violation of energy conservation.

For a Lorentz invariant theory with no UV cut-off, the rate of particle production diverges,

and the vacuum is destroyed infinitely quickly (see [26]).

Our conclusion, then, is that although the Einstein vacuum is stable, the Gauss-Bonnet

vacuum is certainly unstable. This perturbative instability is due to a tensor ghost, which

can propagate freely on the vacuum. It can be seen even at a classical level whenever there

is a source of gravitational waves. In the absence of any excited sources, the vacuum is still

quantum mechanically unstable as long as the ghost couples to ordinary matter fields. Note

that the ghost is not excited by the spherically symmetric solutions given by (2.1) and (2.3),

so it comes as no surprise that Deser and Tekin ultimately found the gravitational energy

of these solutions to be positive. Those solutions only excite scalars, which are not freely

propagating, and therefore only carry energy given to them by the source.

In the interests of completeness, we note that all of these results rely on the fact that the

overall gravitational coupling, κ = 1/16πG > 0. If we reverse the sign of κ (without altering

the matter lagrangian), the situation is reversed: the Einstein branch suffers from a ghost,

whilst the GB branch is stable. Since the overall sign of the gravitational Hamiltonian

is also reversed, the black holes masses take the opposite sign to the inertial mass of the

source, but again, do not depend on which branch you are on. This theory does not admit

a sensible general relativistic limit as α → 0, as the Einstein-Hilbert piece always takes the

wrong sign in the action, so we will not discuss it further.

We end this section with a note of caution. The perturbative analysis we have presented

here is not universally applicable. In particular, we see that it will fall victim to strong

coupling when the coefficient of the kinetic term in (2.6) becomes very small, i.e. as Λeff →
ΛCS. This corresponds to nearing the Chern-Simons limit, when higher order interaction

terms become important, and one needs to go beyond perturbation theory in order to study

vacuum stability. This will be the subject of the next section.

3. Bubbling Gauss-Bonnet vacua

In the last section, we saw how the Gauss-Bonnet vacuum suffered from a perturbative

ghost instability. This result holds firm as long as we are not too close to the Chern-

Simons limit, at which point perturbation theory breaks down due to strong coupling.

In this section, we will study vacuum stability using non-perturbative phenomena. We

will be interested in instantons that represent tunnelling between vacua, through bubble

nucleation. As we will see later, our description will actually work best close to the Chern-

Simons limit, i.e. precisely when the analysis of the previous section becomes invalid. The

techniques for studying vacuum decay were developed by Coleman and his collaborators,
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first for QFT in Minkowski space [20], and later including the effect of four dimensional

Einstein gravity [21]. We will now extend that analysis to D dimensional Gauss-Bonnet

gravity (see also the very recent study [27]).

We begin by constructing the so-called “bounce” geometries, named after the cor-

responding entity in particle mechanics. Typically, these describe spherically symmetric

bubbles of “true” vacuum expanding in the “false” vacuum. Occasionally, the reverse is

possible, with bubbles of false vacuum forming inside the true vacuum with a small but

non-zero probability [30]. In the thin wall limit, which we will consider here, the two vacua

are separated by a domain wall, composed of ordinary matter.

Let us denote the interior of the bubble by M1 and the exterior by M2. We will assume

that for i = 1, 2, Mi is a maximally symmetric solution to the vacuum field equations

Gab + Λigab + αiHab = 0. (3.1)

Note that at this stage we are not assuming that Λ1 = Λ2 or α1 = α2. We do this

for the purpose of generality, since we might want think of Gauss-Bonnet gravity as an

effective theory, with these quantities corresponding to the vevs of other fields. However,

our ultimate interest will lie in transitions between branches, and the stability of the vacua

for a given set of vevs. So, although we will keep things general for the most part, we will

occasionally assume that the bare parameters are indeed the same on either side of the

wall.

The wall itself represents the common boundary of the two manifolds, and is denoted

by Σ = ∂M1 = ∂M2. We will assume that the wall has tension σ, so that the junction

conditions3 there are given by [28]

κ∆

[

Kµν − Kγµν + 2α

(

Qµν − 1

3
Qγµν

)]

=
σ

2
γµν (3.2)

where the jump operator is ∆X = X2−X1 and the averaging operator is 〈X〉 = (X1+X2)/2.

The extrinsic curvature of the wall in Mi is given by the Lie derivative of the induced metric

γµν , with respect to the unit normal, na, to the wall pointing out of M1 and into M2,

K(i)
µν =

1

2
Lnγµν . (3.3)

If the Riemann tensor on the wall is given by Rµναβ , then, suppressing the label (i),

Qµν = 2KKµλKλ
ν + KλρK

λρKµν − 2KµλKλρKνρ − K2Kµν

+2KRµν + RKµν − 2KλρRλµρν − 4R λ
(µKν)λ (3.4)

Note that we have used Latin indices to describe the bulk coordinates, and greek indices to

describe the wall coordinates. In particular, it is convenient to introduce Gaussian-Normal

3Junction conditions are uniquely determined in Lovelock theory due to the fact that equations remain

second order and boundary terms to a manifold with boundary are uniquely defined as dimensionally

extended Chern D−1 forms (see for example [3]). The relevant boundary term for Gauss-Bonnet was given

by Myers in [9]. Varying this boundary term gives the result of [28]
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coordinates xa = (ξ, xµ) relative to the wall, which is fixed at ξ = ξ0. The bulk metric is

then given by

ds2 = gabdxadxb = dξ2 + ρ(ξ)2
[

−dτ2 + cosh2 τdΩD−2

]

(3.5)

Note that the expanding bubble wall corresponds to a de Sitter hyperboloid of constant

radius, ρ(ξ0), embedded in the bulk geometry. If the effective cosmological constant in Mi

is written as Λ
(i)
eff = −1

2(D − 1)(D − 2)k2
i , then the function ρ(ξ) is given by

ρ(ξ) =
1

k1
sinh(k1ξ), 0 ≤ ξ ≤ ξ0 (3.6)

in M1 and

ρ(ξ) =
1

k2
sinh[k2(ξ − β)], ξ0 ≤ ξ ≤ ξmax (3.7)

in M2, where

ξmax =

{

∞ for k2
2 ≥ 0

β + π/|k2| for k2
2 < 0

(3.8)

Note that these formulas are valid, even when k2
i ≤ 0, as long as the appropriate limit

or analytic continuation is understood. The boundary conditions at the wall are given by

continuity of the induced metric

∆

[

sinh kλ

k

]

= 0, λ1 = ξ0, λ2 = ξ0 − β (3.9)

and the junction conditions (3.2). The latter gives the following expression for the wall

tension

σ = −2(D − 2)κ∆

[

ρ′

ρ

{

1 − 2

3
(D − 3)(D − 4)α

[

(

ρ′

ρ

)2

− 3

ρ2

]}]

ξ=ξ0

(3.10)

This expression only really makes sense if the thin wall approximation is a good one. For

this to be so, we require [21]

∣

∣

∣
∆ρ′(ξ0)

∣

∣

∣

ρ(ξ0)
≪ 1

ρ(ξ0)
=⇒

∣

∣

∣
∆[cosh kλ]

∣

∣

∣
≪ 1 =⇒

∣

∣

∣
|k2|λ2 − |k1|λ1

∣

∣

∣
≪ 1 (3.11)

Furthermore, the wall is assumed to be made up of ordinary fields, and therefore its energy

momentum tensor, Tab = −δ(ξ − ξ0)σγµνδµ
a δν

b , must satisfy the weak energy condition.

This means that we require σ ≥ 0 for viable bounce geometries. As a check, consider

the case where the vacuum is Einstein on both sides of the bubble wall, and take the GR

limit, α1 = α2 = 0, so that σ = −2(D − 2)κ∆ [cosh kλ] /ρ(ξ0). Assuming the thin wall

approximation (3.11), we see that σ ≥ 0, if, and only if, we have one of the following

(i) Λ1 ≤ Λ2 ≤ 0

(ii) Λ1 ≤ 0 ≤ Λ2

– 8 –
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(iii) 0 ≤ Λ1 ≤ Λ2, |k1|λ1 ≤ |k2|λ2 ≤ π
2

(iv) 0 ≤ Λ2 ≤ Λ1, |k2|λ2 ≥ |k1|λ1 ≥ π
2

Cases (i) to (iii) are consistent with [21], and describe tunnelling between a false vacuum

of large Λ, to a true vacuum of smaller Λ. If both vacua are de Sitter, we see from case (iv)

that tunnelling can occur in the opposite direction, from true to false, but with a very low

nucleation rate (see, for example [30]).

We are primarily interested in transitions between branches in Gauss-Bonnet gravity.

With this in mind, let us consider the case where the bare parameters are the same inside

and outside of the bubble (i.e. ∆Λ = ∆α = 0). It then follows that

σ = −2

3
(D − 2)(D − 3)(D − 4)κα

(

∆ [cosh kλ]

ρ(ξ0)

)3

(3.12)

The thin wall approximation (3.11) has extra significance here, since it corresponds to being

close to the Chern-Simons limit. This is precisely when the perturbative analysis of the

previous section was in danger of breaking down due to strong coupling effects. Because

they have opposite regimes of validity, we see explicitly how the two sections compliment

one another perfectly. On the one hand we have a perturbative analysis that works best far

away from the Chern-Simons limit, whereas on the other hand we have a non-perturbative

analysis that works best close to that limit.

Given the expression (3.12), and assuming the thin wall limit approximation (3.11),

we see that σ ≥ 0, if, and only if, one of the following holds

(a) α > 0, Λeff
1 ≤ Λeff

2 ≤ 0

(b) α > 0, Λeff
1 ≤ 0 ≤ Λeff

2

(c) α < 0, 0 ≤ Λeff
1 ≤ Λeff

2 , |k1|λ1 ≥ |k2|λ2 ≥ π
2

(d) α < 0, Λeff
2 ≤ 0 ≤ Λeff

1

(e) α < 0, 0 ≤ Λeff
2 ≤ Λeff

1 , |k2|λ2 ≤ |k1|λ1 ≤ π
2

Cases (a) to (c) describe tunnelling from high to low effective cosmological constant, con-

sistent with decay of the false vacuum through the nucleation of a bubble of true vacuum.

The remaining cases, (d) and (e), describe the reverse process, in which true vacuum decay

occurs, and we have tunnelling to higher Λeff . These are analogous to case (iv) in the GR

limit, although now we no longer require both vacua to be de Sitter.

Which is the true and false vacuum depends on the sign of α. For α > 0, the Gauss-

Bonnet vacuum may be thought of as the true vacuum, as we always have Λ+
eff ≤ ΛCS ≤ Λ−

eff ,

whereas for α < 0, it is the Einstein vacuum that is the true vacuum, as Λ−
eff ≤ ΛCS ≤ Λ+

eff .

Note that while case (c) corresponds to the nucleation of a bubble of Einstein vacuum in

Gauss-Bonnet, all other cases correspond to the reverse: bubbles of Gauss-Bonnet vacuum

in Einstein.
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Vacuum decay occurs when a region of vacuum is replaced with a region of another

vacuum, such that there is a net energy loss inside the bubble. This energy is used to excite

the fields that form the bubble wall, so that overall, energy is conserved. We can illustrate

this explicitly in the present case by calculating the energy of the bubble relative to the

region of initial vacuum it replaced. This can be done using the Hamiltonian formulae

derived in [12]. Note that in (3.5) we have expressed the bulk metric using cosmological

coordinates along the direction of the wall. Since we want to calculate an energy, its

convenient to transform to global de Sitter coordinates along the wall, so that the bulk

metric is written as

ds2 = dξ2 + ρ(ξ)2
[

−(1 − r2)dt2 +
dr2

1 − r2
+ r2dΩD−3

]

(3.13)

Surfaces of constant t, Σt, provide a foliation of the bulk with respect to the timelike Killing

vector ∂/∂t. It follows that the lapse function N = ρ
√

1 − r2, and the shift vector vanishes.

We also need to define the surface St, which is the intersection of the wall with Σt, and has

induced metric qijdxidxj = ρ2(ξ0)
(

dr2

1−r2 + r2dΩD−3

)

. Now, from [12], the energy stored

inside the bubble is given by4

Ebubble = κ

∫

St

dD−2x ∆L∗
bdy (3.14)

where, for vanishing shift vector,

L∗
bdy =

√
qN

[

2K + 12αδ
[l
i δm

j δ
n]
k

(

Ki
l

(

Rjk
mn(q) − 2Hj

mHk
n

)

− 2

3
Ki

lKj
mKk

n

)]

(3.15)

Here Rijkl(q) is the Riemann curvature on St, and Kij and Hij are the extrinsic curvatures

of St in Σt and the wall respectively. After a little algebra and integration, one finds that

the energy inside the bubble is given by

Ebubble = 2κΩD−3ρ(ξ0)
D−1∆

[

ρ′

ρ

{

1 − 2

3
(D − 3)(D − 4)α

[

(

ρ′

ρ

)2

− 3

ρ2

]}]

ξ=ξ0

= − σ

D − 2
ΩD−3ρ(ξ0)

D−1 (3.16)

where we have used equation (3.10). When the tension is positive, the energy of the

bubble is negative relative to the region of vacuum it replaced. This applies in each of the

five cases (a) to (e), regardless of whether or not the bubble is one of true or false vacuum.

It couldn’t be any other way, since the energy stored in the wall must be compensated for

by an energy deficit inside the bubble. In fact,

Ewall =

∫

St

dD−2x
√

qNσ = −Ebubble (3.17)

and so the net energy is indeed zero.

4The alert reader will notice that there is sign difference between equation (3.14), and the corresponding

energy formula (98) in [12]. In [12], for any quantity X in the test spacetime, with corresponding value X̄

in the background, ∆X = X − X̄ . In this paper, however, the bubble is given by M1, and so X = X1 and

X̄ = X2, which means our definition of ∆ differs by a sign, compared with [12].
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We will now apply standard semi-classical techniques [20, 21] in order to derive the

probability of bubble nucleation in the general case. This is given by

P ∝ e−B/~ (3.18)

where the instanton action, B, is given by the difference between the Euclidean bounce

action and background action

B = Sbounce − Sbackground (3.19)

A general bounce is made up of the bubble interior, M1, the exterior, M2, and the bubble

wall, Σ. In Lorentzian signature it is described by equations (3.5) to (3.7). To go to

Euclidean signature we Wick rotate the time coordinate, τ → iτE , so that the Euclidean

bounce geometry is given by

ds2 = gabdxadxb = dξ2 + ρ(ξ)2dΩD−1 (3.20)

As usual, the wall, which was a de Sitter hyperboloid in Lorentzian signature, corresponds

to a (D − 1)-sphere in Euclidean signature. Taking care to include the relevant surface

terms in the action [29, 9], we find that the Euclidean bounce action is given by

Sbounce = −κ

∫

M1

S

M2

√
g (R − 2Λ + αLGB) +

∫

Σ

√
γ

[

κ

(

2∆K +
4

3
∆(αQ)

)

+ σ

]

+ (boundarytermsatinfinity) (3.21)

To describe the background geometry, M̄, we simply extend the solution in M2 all the

way to the centre of the space, so that the Euclidean background metric is given by

ds2 = ḡabdxadxb = dξ2 + ρ̄(ξ)2dΩD−1 (3.22)

where

ρ̄(ξ) =
1

k2
sinh[k2(ξ − β)], β ≤ ξ ≤ ξmax. (3.23)

The background action is therefore given by

Sbackground = −κ

∫

M̄

√
ḡ (R − 2Λ + αLGB) + (boundarytermsatinfinity) (3.24)

It is clear that when we calculate the instanton action, B, the boundary terms at infinity

cancel one another. Plugging everything in, and making use of the expression (3.10), we

find that the instanton action is given by

B = κΩD−1∆

[

(

− 2Λ − D(D − 1)k2 + D . . . (D − 3)αk4
)

∫ λ

0
dη

(

sinh kη

k

)D−1

(3.25)

+2ρD−2ρ′
{

1 − 2(D − 2)(D − 3)α

[

(

ρ′

ρ

)2

− 3

ρ2

]}]

ξ=ξ0

– 11 –



J
H
E
P
1
2
(
2
0
0
8
)
0
3
8

This expression is valid even when ∆Λ 6= 0, and/or ∆α 6= 0. Again, we use the GR

limit as a check, taking both vacua to be Einstein and setting α1 = α2 = 0 so that

B = 2κ(D − 2)ΩD−1∆
[

∫ λ
0 dη(k−1 sinh kη)D−3

]

. In the thin wall approximation (3.11), we

set Λi = 〈Λ〉(1 + ǫi), where |ǫi| ≪ 1, and then it is straightforward to check that 〈ǫ〉 = 0.

From (3.6) and (3.7), we see that kiλi = sinh−1 kiρ(ξ0), where ρ(ξ0) is fixed, and so

B = − 2

D − 1
κΩD−1ρ(ξ0)

D f(〈kλ〉)∆Λ + O(ǫ2) (3.26)

where f(z) = − 1
sinh2 z

(

1
cosh z − (D−2)

sinh z

∫ z
0 dw

(

sinh w
sinh z

)D−3
)

. Now for x, y ∈ R we have

f(x) ≥ 0 for x ≥ 0, whereas f(iy) > 0 for y ∈ (0, π/2) and f(iy) < 0 for y ∈ (π/2, π). As ex-

pected [21], B > 0 for each case (i) to (iv), so the probability of tunnelling between vacua is

always exponentially suppressed. True vacuum decay, given by case (iv), is even further sup-

pressed, as can be seen using the identity f(iy)+f(i(π−y)) = − (D−2)
sinDy

∫ π
0 dw sinD−3 w [30].

Returning to Gauss-Bonnet gravity, we are mainly interested in transitions between

branches, and the tunnelling processes described by (a) to (e). Explicity setting ∆Λ =

∆α = 0, we find that the instanton action simplifies, a little, to give

B = κΩD−1

{

∆

[

(

− 2Λ − D(D − 1)k2 + D . . . (D − 3)αk4
)

∫ λ

0
dη

(

sinh kη

k

)D−1
]

+2ρ(ξ0)
D−1

[

−2

(

D − 1

D − 4

)

∆ [cosh kλ]

ρ(ξ0)
+ (D−2)(D−3)α

(

∆ [cosh kλ]

ρ(ξ0)

)3
]}

(3.27)

As we have already stated, the thin wall approximation can only really be trusted close

to the Chern-Simons limit, i.e. when Λ
(i)
eff = ΛCS(1 + ǫi), where |ǫi| ≪ 1. For transitions

between branches the average effective cosmological constant, 〈Λeff〉 = ΛCS, and so 〈ǫ〉 = 0.

For cases (a) to (e), it follows from (3.12) that σ = O(ǫ3) > 0, and from (3.27) that

B = O(ǫ3).

Working to order ǫ, we now see how a tensionless domain wall mediates transitions

between branches in Gauss-Bonnet gravity, altering the effective cosmological constant.

At this order, the transition probability (3.18) is not suppressed, in contrast to similar

transitions in General Relativity. This is the main result of this section, and can be

interpreted as follows: close to the Chern-Simons limit, there is large mixing between the

two distinct vacua in Gauss-Bonnet gravity. Neither the empty Einstein vacuum, nor the

empty Gauss-Bonnet vacuum provide a good description of the stable quantum vacuum,

as they will both become littered with bubbles of the other.

It is interesting to note that a similar behaviour was seen in the DGP model [31].

In that case there is large mixing with empty five-dimensional space and one filled with

so-called self-accelerating branes [32]. This pathology stemmed from the presence of per-

turbative ghosts on the self-accelerating branch [33], so given the results of the previous

section, it is tempting to think that something similar is happening here. This may be

so, but there are a number of reasons to tread carefully before making such a conclusion.

Firstly, as we saw in the last section, the perturbative ghost only haunts the Gauss-Bonnet

branch, whereas here, tunnelling from both branches is unsuppressed. Secondly, and most
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importantly, this section and the last have opposite regimes of validity, and in particular,

one cannot really trust the existence of the ghost beyond the strong coupling scale, which

is very low close to the Chern-Simons limit.

4. Discussion

Lovelock theory in D > 4 spacetime dimensions differs dynamically from the naive exten-

sion of General Relativity in higher dimensions. Unlike GR and Chern-Simons gravity [34],

where the vacua are unique, Lovelock theory has multiple vacua for a given set of bare pa-

rameters in the action. In the simplest non-trivial extension of Lovelock theory, namely

Einstein-Gauss-Bonnet (EGB) gravity, there are two such vacua: one with a well defined

limit as α → 0 (the Einstein vacuum), and one without (the Gauss-Bonnet or “stringy”

vacuum ). We have demonstrated that the Gauss-Bonnet vacuum is perturbatively unsta-

ble, despite the fact that the corresponding black hole excitations have positive mass, as

shown recently by Deser and Tekin [11]. The instability is due to a perturbative spin 2

ghost that is not excited in spherically symmetric vacua owing to an analogue of Birkhoff’s

theorem in Lovelock gravity [14, 15, 23]. However, since the ghost couples to matter, and

other ordinary fields, it will inevitably lead to a quantum instability of the vacuum through

ghost-nonghost pair production, without violating conservation of energy.

At the classical level, the pure vacuum itself is not unstable. A classical instability can

appear if a small amount of matter is put in by hand so that you are not quite in vacuum.

To see this, consider a matter source that is capable of emitting gravitational waves such as

a binary system of black holes with a time dependent mass quadrupole. Since the gravitons

are ghost-like they carry negative kinetic energy, and their emission leads to an increase in

the energy of the source. We soon end up with a spacetime containing a very high energy

source surrounded by a turbulent sea of gravitational waves, and as such, this can no longer

be regarded as a perturbation about the vacuum. In this sense the introduction of a small

matter source has rapidly destroyed the vacuum, destabilising the system already at the

classical level.

It is natural to ask what is the end point of the ghost instability? One might speculate

that it leads to a transition between branches, which may certainly be possible at the

quantum level. We saw in section 3 how quantum transitions between branches can occur

through bubble nucleation, although it was not clear whether or not this had anything to

do with the ghost, or some other superselection mechanism. Another possibility is that the

ghost mediates vacuum decay into spacetimes of less symmetry, as one might infer from

the enhanced production of Nariai black holes in six dimensions [17]. We will discuss this

possibilty in more detail later on. At the classical level, things are just as speculative.

Classically, it is very difficult to see how a transition between branches could happen since

it would require a change in the asymptotics. In this case, the end point, if it even exists,

will presumably depend on the nature of the source, and one may have to resort to complex

numerical simulations to shed any more light on the issue.

All these statements regarding the (in)stability of vacua at both the classical and

quantum level are reliable as long as linearised perturbation theory works well on all but the
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shortest distance scales, i.e. as long as Λeff/ΛCS ≪ 1. However, as we approach the Chern-

Simons limit in which the two vacua become degenerate (Λeff/ΛCS → 1), the coupling of

the graviton to other fields and to itself becomes stronger and stronger. This leads to a

breakdown of linearised theory at larger and larger scales, pushing out the region of space in

which we trust our perturbative analysis. Indeed, in the exact Chern-Simons limit, we see

from (2.7) that linearised theory breaks down altogether, on all scales. Close to this limit,

we cannot make any robust conclusions regarding stability from a perturbative analysis

alone. This limit has qualitative similarities to the partially massless limit for massive

gravity in de Sitter [35, 36], aswell as the chiral limit of topologically massive gravity5 in

AdS [37, 38], and the zero tension limit of DGP self-acceleration [31 – 33]. In each case

there is a ghost whose kinetic term seems to disappear [35, 37, 33] in the appropriate limit

and a more careful analysis is required to identify any left over degrees of freedom. For

massive gravity in de Sitter, the dangerous mode genuinely disappears [36], whereas in the

latter two cases the ghost mixes with another mode, such that one ghost-like degree of

freedom remains [38, 33]. We would need a direct analysis beyond the scope of this paper

to see what happens in the exact Chern-Simons limit of EGB gravity.

Although linearised analysis breaks down close to this limit due to strong coupling,

this is precisely the regime in which we can reliably study instanton transitions between

the two distinct vacua arising from the same theory (with the same bare parameters). The

transitions are achieved through bubbles of one vacuum being nucleated within a sea of the

other vacuum. The instanton analysis relies on the thin wall approximation, which works

best near the Chern-Simons limit. This is because the two vacua are energetically very

close to one another, and so only a small kink is required in the geometry of the bounce.

In the thin wall/near Chern-Simons limit, we saw that the transition probability of bubble

nucleation is not (linearly) suppressed unlike similar transitions in Einstein gravity [21], and

concluded that there is very strong mixing between the two distinct vacua of Gauss-Bonnet

gravity. For this reason, in the strong coupling regime, neither vacuum can accurately

describe the true quantum vacuum state, since both will quickly become littered with

bubbles of the other vacuum.

We have focussed on two pathologies associated with vacua in Einstein-Gauss-Bonnet

gravity: a ghost-like instability in the perturbative regime on the GB branch, and un-

suppressed mixing between vacua in the strong coupling regime. A third pathology was

recently identified on the Einstein branch, through calculations of the viscosity-entropy

bound [39] for gauge theories with a Gauss-Bonnet gravity dual. In the background of

an EGB planar black hole, it was found that graviton wave packets can propagate with

superluminal speeds whenever 9
25 ≤ 8αk2 ≤ 1, where 1/k is the AdS length. This is not

necessarily a sign of instability of the background, but one might expect some transition

and novel physics to appear whenever 8αk2 ∼ 9
25 . This scale does not show up in our cal-

culations because we have considered perturbations of maximally symmetric backgrounds

where the perturbation operator (2.7) is simply a constant multiple of the Einstein pertur-

bation operator. This is no longer the case when the background has a non-trivial Weyl

tensor, as in the case of the planar black hole calculation of [39].

5We thank Stanley Deser and Bayram Tekin for drawing our attention to this.
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We close off the section by complementing our instanton analysis of section 3 with some

exact gravitational instantons present for positive effective cosmological constant. Some

of these are present in General Relativity and correspond to the spontaneous creation

of black hole pairs in the de Sitter vacuum, which are then accelerated away from one

another by the background cosmological constant. In four dimensional GR, the well known

“perdurance” calculations [40] demonstrate that de Sitter space is semi-classically unstable

to the creation of Nariai black hole pairs, albeit at an exponentially suppressed rate (see [41]

for the extension to higher dimensional GR). In five dimensional EGB gravity, we find that

the Nariai black hole can only exist on the Einstein branch, and only when the bare

cosmological constant, Λ = 6H2 > 0. The corresponding instanton has geometry S2 × S3,

and is given by the following metric

ds2 =

(

1 + 8αH2

4H2

)

dΩ2 +
1

2H2
dΩ3 (4.1)

Recall that Λ/ΛCS ≤ 1/2 and so 1 + 8αH2 ≥ 0. This means that the metric (4.1) is well

defined except in the Chern-Simon limit when the two-sphere shrinks to zero size. The

background geometry is obtained by Wick rotating the Lorentzian de Sitter vacuum to

euclidean signature. It is therefore given by a five-sphere of radius H−1
eff where

H2
eff =

Λeff

6
=

√
1 + 8αH2 − 1

4α
(4.2)

is the effective curvature of the background. The instanton action (3.19) is given by

BNariai = 4πΩ3κ

(

1 + 12αH2
eff

H3
eff

− 1 + 24αH2

√
2H3

)

(4.3)

which is always positive in the regime for which the solution (4.1) is valid (H2 > 0, 8αH2 >

−1). The creation rate of Nariai black hole pairs is therefore exponentially suppressed, since

P ∝ e−BNariai/~, as in General Relativity.

Interestingly, it turns out that there is an alternative channel for the creation of black

hole pairs in five dimensional de Sitter, unique to EGB gravity. The process is described by

a novel gravitational instanton solution that is, again, only present on the Einstein branch,

and has metric

ds2 = V (r)dτ2 +
dr2

V (r)
+ r2dΩ2

3 (4.4)

with

V (r) = 1 +
r2

4α

(

1 −
√

(1 + 8αH2)

(

1 +
16α2

r4

)

)

(4.5)

The solution is only valid when α > 0 and 0 < H2 < 1/8α, and is smooth everywhere in the

range, r− ≤ r ≤ r+ where r2
± = 1±

√
1−64α2H4

2H2 are the horizon positions, V (r±) = 0, for the

corresponding Lorentzian black hole. The smoothness of the solution (4.4) is guaranteed by

the fact that V ′(r+) = −V ′(r−), which means both horizons have the same temperature

T = |V ′(r±)|/4π. Upon Wick rotating the Lorentzian black hole solution to Euclidean
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signature, this ensures that the instanton solution (4.4) is free from conical singularities at

both r− and r+, provided we choose Euclidean time to have period 1/T . The instanton (4.4)

describes the sponteneous creation of the Lorentzian black holes in the de Sitter vacuum.

The creation rate is again governed by the instanton action,

Balternative = 4πΩ3κ

[

1 + 12αH2
eff

H3
eff

− (r+ + r−)3
]

(4.6)

As before, this is always positive within the regime of validity of the solution (4.4), so the

corresponding black hole creation rate is again exponentially suppressed. However, when

both instantons solutions, (4.1) and (4.4), exist, it turns out that BNariai ≥ Balternative, with

equality6 at the endpoint H2 = 1/8α. This means that the creation of these alternative

black holes exceeds that of the Nariai black holes! In fact the creation rate of the alternative

black holes approaches order one as α → 0. This is because the alternative black hole, which

has mass Malternative = 6α(1 + 8αH2)Ω3κ, becomes arbitrarily small in the GR limit.

We wish to reiterate the fact that no such gravitational instantons exist on the Gauss-

Bonnet branch in D = 5 dimensions. However, in D = 6, as was recently shown in [17],

there exist Gauss-Bonnet branch Nariai instantons for which the instanton action is neg-

ative and therefore black hole production is exponentially enhanced! Naively, this would

seem to reflect the presence of the perturbative ghost discussed in section 2. Of course,

this ghost is present in D = 5 aswell as D = 6, so the absence of a five-dimensional Nariai

instanton on the GB branch would seem to suggest otherwise. However, we can’t rule out

the possibility that there are other gravitational instantons whose action is also negative,

leading to exponentially enhanced production rates.

To sum up we have demonstrated that the Gauss-Bonnet vacuum is perturbatively

unstable in EGB theory. We expect an analogous result to be true generically for all

Lovelock theories. The result is robust as long as linearised perturbation theory is valid.

This is true beyond a certain length scale, which grows larger and larger as we approach the

Chern-Simons limit. Close to that limit, when linearised perturbation theory has broken

down almost completely, we found strong mixing between the two vacua, so that neither

could accurately describe the true quantum vacuum.
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